Decision Rules for Robotic Mobile Fulfillment Systems
نویسندگان
چکیده
The Robotic Mobile Fulfillment Systems (RMFS) is a new type of robotized, parts-to-picker material handling system, designed especially for e-commerce warehouses. Robots bring movable shelves, called pods, to workstations where inventory is put on or removed from the pods. This paper simulates both the pick and replenishment process and studies the order assignment, pod selection and pod storage assignment problems by evaluating multiple decision rules per problem. The discrete event simulation uses realistic robot movements and keeps track of every unit of inventory on every pod. We analyze seven performance measures, e.g. throughput capacity and order due time, and find that the unit throughput is strongly correlated with the other performance measures. We vary the number of robots, the number of pick stations, the number of SKUs (stock keeping units), the order size and whether returns need processing or not. The decision rules for pick order assignment have a strong impact on the unit throughput rate. This is not the case for replenishment order assignment, pod selection and pod storage. Furthermore, for warehouses with a large number of SKUs, more robots are needed for a high unit throughput rate, even if the number of pods and the dimensions of the storage area remain the same. Lastly, processing return orders only affects the unit throughput rate for warehouse with a large number of SKUs and large pick orders.
منابع مشابه
RAWSim-O: A Simulation Framework for Robotic Mobile Fulfillment Systems
This paper deals with a new type of warehousing system, Robotic Mobile Fulfillment Systems (RMFS). In such systems, robots are sent to carry storage units, so-called “pods,” from the inventory and bring them to human operators working at stations. At the stations, the items are picked according to customers’ orders. There exist new decision problems in such systems, for example, the reallocatio...
متن کاملAre Autonomous Mobile Robots Able to Take Over Construction? A Review
Although construction has been known as a highly complex application field for autonomous robotic systems, recent advances in this field offer great hope for using robotic capabilities to develop automated construction. Today, space research agencies seek to build infrastructures without human intervention, and construction companies look to robots with the potential to improve construction qua...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کاملInventory Allocation in Robotic Mobile Fulfillment Systems
A Robotic Mobile Fulfillment System is a recently developed automated, parts-topicker material handling system. Robots can move storage shelves, also known as inventory pods, between the storage area and the workstations and can continually reposition them during operations. This paper shows how to optimize three key decision variables: (1) the number of pods per product (2) the ratio of the nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.06703 شماره
صفحات -
تاریخ انتشار 2018